基础和分子遗传学

Basic and Molecular Genetics

作者:Arun Kumar Tomar, Archana Tomar & Sukhvir Singh Tomar

出版社:Daya Publishing House

索书号:Q75/T655/2018/Y

ISBN9789387057296

藏书地点:武大外教中心

1944年美国学者O.T.埃弗里等首先在肺炎双球菌中证实了转化因子是脱氧核糖核酸(DNA),从而阐明了遗传的物质基础。1953年美国分子遗传学家J.D.沃森和英国分子生物学家F.H.C.克里克提出了 DNA分子结构的双螺旋模型。这一发现常被认为是分子遗传学的真正开端。1955年美国分子生物学家S.本泽用基因重组分析方法研究大肠杆菌(Escherichia coli)T4噬菌体中的基因精细结构,其剖析重组的精细程度达到DNA多核苷酸链上相隔仅三个核苷酸的水平。这一工作在概念上沟通了分子遗传学和经典遗传学。关于基因突变方面,早在1927H.J.马勒和1928 L.J.斯塔德勒就用X射线等诱发了果蝇和玉米的基因突变,但是在此后一段时间中对基因突变机制的研究进展很慢,直到以微生物为材料广泛开展突变机制研究和提出 DNA分子双螺旋模型以后才取得显著成果。例如碱基置换理论便是在T4噬菌体的诱变研究中提出的,它的根据便是DNA复制中的碱基配对原理。美国遗传学家G.W.比德尔和美国生物化学家E.L.塔特姆根据对粗糙脉孢菌的营养缺陷型的研究,在40年代初提出了一个基因一种酶假设(见微生物遗传学),它沟通了遗传学中对基因的功能的研究和生物化学中对蛋白质生物合成的研究。按照一个基因一种酶假设,蛋白质生物合成的中心问题是蛋白质分子中氨基酸排列顺序的信息究竟以什么形式储存在DNA分子结构中,这些信息又通过什么过程从 DNA向蛋白质分子转移。

前一题是遗传密码问题,后一问题是蛋白质生物合成问题,这又涉及转录和翻译、信使核糖核酸(mRNA)、转移核糖核酸(tRNA)和核糖体的结构与功能的研究。这些分子遗传学的基本概念都是在50年代后期和60年代前期形成的。分子遗传学的另一重要概念——基因调控在19601961年由法国遗传学家J.莫诺和F.雅各布提出。他们根据在大肠杆菌和λ噬菌体中的研究结果提出乳糖操纵子模型。接着在1964年又由美国微生物和分子遗传学家C.亚诺夫斯基和英国分子遗传学家S.布伦纳等分别证实了基因的核苷酸顺序和它所编码的蛋白质分子的氨基酸顺序之间存在着排列上的线性对应关系,从而充分证实了一个基因一种酶假设。此后真核生物的分子遗传学研究才逐渐开展起来。

从分子遗传学角度来看,真核生物和原核生物有许多相同之处,包括以DNA作为遗传物质(只有原核生物中的RNA病毒以RNA为遗传物质)、基本上相同的遗传密码、蛋白质合成过程以及基因突变机制等。但是它们之间也有一些显著的区别。例如原核生物的基因调控主要通过操纵子的作用,可是在真核生物中对于操纵子的存在还有争论,即使有的话也不像细菌中那样普遍。在真核生物的基因组中普遍存在着不编码肽链的重复序列,原核生物则罕见。在真核生物和真核生物的病毒的基因组中还发现了大量的断裂基因,但到目前为止,在原核生物和原核生物的病毒中则除了少数病毒以外没有发现过断裂基因。因此对真核生物中特殊问题的研究形成了分子遗传学中的新的研究领域。原核生物和真核生物的染色体外遗传物质也有很大差别,原核生物细胞中只有质粒,没有叶绿体和线粒体等细胞器(见染色体外遗传)。1963年证实了叶绿体中存在着DNA以后,细胞器的遗传学研究得到了新的推动。转座因子是一种可以转移位置的遗传因子。原核生物的转座子和真核生物的各种转座因子也都是目前分子遗传学的重要研究课题。此外,在发生遗传学、免疫遗传学和进化遗传学(见群体遗传学)等学科中也都存在着许多分子遗传学的研究课题。

抽提、分离、纯化和测定等都是分子遗传学中的常用方法。在对生物大分子和细胞的超微结构的研究中还经常应用电子显微镜技术。对于分子遗传学研究特别有用的技术是顺序分析、分子杂交和重组DNA技术。核酸和蛋白质是具有特异性结构的生物大分子,它们的生物学活性决定于它们的结构单元的排列顺序,因此常需要了解它们的这些顺序。如果没有这些顺序分析,则基因DNA和它所编码的蛋白质的线性对应关系便无从确证;没有核酸的顺序分析,则插入顺序或转座子两端的反向重复序列的结构和意义便无从认识,重叠基因也难以发现。

分子遗传学是从微生物遗传学发展起来的。虽然分子遗传学研究已逐渐转向真核生物方面,但是以原核生物为材料的分子遗传学研究还占很大的比重。此外,由于微生物便于培养,所以在分子遗传学和重组DNA技术中,微生物遗传学的研究仍将占有重要的位置。

分子遗传学方法还可以用来研究蛋白质的结构和功能。例如可以筛选得到一系列使某一蛋白质失去某一活性的突变型。应用基因精细结构分析可以测定这些突变位点在基因中的位置;另外通过顺序分析可以测定各个突变型中氨基酸的替代,从而判断蛋白质的哪一部分和特定的功能有关,以及什么氨基酸的替代影响这一功能等等。生物进化的研究过去着眼于形态方面的演化,以后又逐渐注意到代谢功能方面的演变。自从分子遗传学发展以来又注意到DNA的演变、蛋白质的演变、遗传密码的演变以及遗传机构包括核糖体和tRNA等的演变。通过这些方面的研究,对于生物进化过程将会有更加本质性的了解。

分子遗传学也已经渗入到以个体为对象的生理学研究领域中去,特别是对免疫机制和激素的作用机制的研究。随着克隆选择学说的提出,目前已经确认动物体的每一个产生抗体的细胞只能产生一种或者少数几种抗体,而且已经证明这些细胞具有不同的基因型。这些基因型的鉴定和来源的探讨,以及免疫反应过程中特定克隆的选择和扩增机制等既是免疫遗传学也是分子遗传学研究的课题。

《基础和分子遗传学》一书于2018年由Daya University出版社出版,作者是Arun Kumar TomarArchana Tomar Sukhvir Singh Tomar。本书介绍了分子遗传学的发展历程与研究现状。涵盖的内容对于广大遗传学高级课程至关重要。除此之外本书还有以下特点:

1、本书不仅介绍了分子遗传学的基础知识,还详细介绍了研究方法和技术,并结合具体实例的应用,使读者能够更加全面的了解分子遗传学的应用领域。

2、索引文献丰富,证明了这本书的知识性,真实性。而且,这些索引文献绝大部分都是最新研究,让读者全面了解该领域的前沿进展。

3、在本书的最后,将出现的专业词汇都罗列出来,大大方便了大家在阅读过程中对分子遗传学的专业术语的认知。

4、本书最鲜明的特点就是语言浅显易懂,对于初学者有很大的帮助。

 

本书目录

1.       遗传学入门

2.       种群的变异

3.       遗传与环境

4.       孟德尔遗传定律

5.       染色体遗传论

6.       多个等位基因

7.       基因作用1等位基因互作(加性基因作用)

8.       基因作用2非等位基因互作(上位性)

9.       连锁和互换

10.    性别决定

11.    性别控制遗传

12.    微生物片麻学:细菌和病毒

13.    遗传学材料的结构:核酸

14.    突变:一般方

15.    诱变

16.    DNA复制

17.    基因表达的分子机制

18.    遗传密码

19.    基因表达翻译

20.    基因表达调控原核生物

21.    基因表达调控真核生物

22.    基因表达生化途径

23.    分子遗传学技术重组DNA技术

24.    分子遗传学的应用--基因组操作

25.    标记和基因组图谱

26.    概率规则

27.    卡方检测

 

 

兰天 武汉大学生命科学学院 博士研究生